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Abstract 
We describe a genetic  programming  system  which  learns  nonlinear  predictive  models for lossless 

image  compression.  S-expressions  which  represent  nonlinear  predictive  models are learned, and  the 
error image  is  compressed using an adaptive  Huffman  encoder. We  show that  the proposed  system 
is  capable of achieving  compression  ratios  superior to  that of the best  known  lossless  compression 
algorithms. 

1 Introduction 

Lossless image  compression is a  problem  with  many real-world applications which has been studied 
by many researchers. The  current  dominant  paradigm for lossless compression is predictive  coding. 
State of the  art lossless image  compression  algorithms  (based  on  predictive  coding)  include the  CALIC 
algorithm of Wu and Memon [15] and  the  LOCO-I  algorithm of Weinberger  et al. [14]. Reviews of 
lossless image  compression  can  be  found  in [4, 51. 

This  paper  proposes  the use of genetic  programming (GP) [3] in lossless image  compression  as 
the  mechanism for representing  and  learning  nonlinear  models for predictive  coding.  Because of the 
enormous  computational  cost of evolving  nonlinear  predictive  models  would  be  prohibitively  expensive 
using standard  GP  systems, we have implemented a highly efficient, genome-compiler G P  system which 
compiles  s-expressions  into  native  machine  code to enable  the  application of GP  to  this  problem. 

We evaluate  our  GP-based  compression  system by comparison  with  the  state of the  art lossless 
image  compression  algorithms  and show that  it is possible to  obtain  compression  ratios  superior to  the 
best  known  algorithms. 

The rest of the  paper is organized  as follows. In  Section 5, we review predictive  coding  based  image 
compression.  Section 3 describes  the  GP-based  compression  system.  Section 4 presents  an  empirical 
evaluation of our  system  using  some  test  images,  and  compares  the  results  with  that of the  best  known 
lossless compression  algorithms. We discuss related work  in 5, and we conclude in Section 6 with  a 
discussion and  directions  for  future  work. 

2 Predictive  Coding  Based  Image  Compression 

Predictive coding is a.n image  compression  technique  which  uses a compact  model of an  image  to  predict 
pixel  values of an  image  based  on  the values of neighboring pixels. A model of an  image is a function 
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Encoder(Mode1,Image) 
for x = 0 to x m a x  

for y = 0 to y m a x  
Error[x,y] = Image[x,y] - Model(x,y) 

Decoder(Mode1) 
for x = 0 to  x m u x  

for y = 0 to ymux 
Image[x,y] = Model(x,y) + Error[x,y] 

Figure 1: Algorithm  schema for predictive  coding. Moclel(z, y)  is a function  that  takes  the  coordinates of a pixel and 
returns a predicted value of that  pixel. I m a g e  and Error  are  two-dimensional  arrays. 

rnodel(x ,  y) ,  which computes  (predicts)  the pixel value at  coordinate ( x ,  y )  of an  image, given the  values 
of some neighbors of pixel ( x ,  y) ,  where  neighbors  are pixels whose  values are  known.  Typically, when 
processing an  image  in  raster  scan  order (left to  right,  top  to  bottom), neighbors  are  selected  from  the 
pixels above  and to  the left of the  current  pixel. For example,  a  common  set of neighbors  used  for 
predictive  coding is the  set {(x- l ,y- i ) :   (x ,y-1) ,   (x+i ,y- l ) , (x- l ,y)} .   Linear  Predict ive   coding is a  simple, 
special  case of predictive  coding  in  which  the  model  simply  takes an average of the  neighboring  values. 
Nonlinear models  assign  arbitrarily  complex  functions  to  the  models. 

Suppose  that we have a perfect model of an  image,  i.e.,  one which can  perfectly  reconstruct an 
image given the pixel value of the  border pixels (assuming we process the pixels in  raster  order).  Then, 
the value of the  border pixels and  this  compact  model is all that needs to be transmitted in  order 
to  transmit  the whole information  content of the  image.  In  general,  it is not possible to  generate a 
compact, perfect model of an  image,  and  the  model  generates  an error  signal (the differences at each 
pixel between  the  value  predicted by the  model  and  the  actual value of the  pixel  in  the  original  image. 

There  are two  expected  sources of compression  in  predictive  coding  based image  compression  (as- 
suming  that  the predictive  model is accurate  enough).  First,  the  error  signal for each  pixel  should 
have a  smaller  magnitude  than  the  corresponding pixel in the  original  image  (therefore  requiring fewer 
bits  to  transmit  the  error  signal).  Second,  the  error  signal  should have less entropy  than  the  original 
message,  since  the  model  should remove of much of the  “principal  components” of the  image  signal.’ 
To complete  the  compression,  the  error  signal is compressed  using an  entropy  coding  algorithm  such 
as I-Iuffman coding or arithmetic  coding [6]. State of the  art  algorithms such as CALIC also perform 
context  modeling  prior  to  applying  entropy  coding - see [4, 51. Our  system  does  not  apply  context 
modeling  techniques. 

If  we transmit  this compressed  error  signal  as well as  the  model  and  all  other  peripheral  information, 
then a receiver can  reconstruct  the  original  image by applying  an  analogous  decoding  procedure (see 
Figure 1). 

3 Evolving  Nonlinear  Predictive  Models  with a GP  
Given an  image, we use  genetic  programming  to  generate  a  Lisp  s-expression  which  represents a non- 
linear  model of the  image  predictive  coding based  compression. 

The  terminals used for genetic  programming were: 

0 values of the  four  neighboring pixels Image[x- l ,  y-11, Image[x,y-l],   Image[x+l,   y-i],   Image[x-1,yJ 

0 selected  constant  values: 1, 5, 10, 100. 

The  functions used  were: 

‘If the  model were perfect,  then  the  error  signals would consist of all O’s, and  can  be  compressed  to a single  byte. 



0 arithmetic  functions: +,-,*,% (protected  division [3]) 

MIN(a,b)  and  MAX(a,b)  functions which return  the  minimum  and  maximum  values of their  two 
arguments, respectively. 

As we noted  in  Section 2 ,  a  standard  entropy  coding  algorithm needs to be  applied  to  the  error 
image. For this  experiment, we used an  adaptive  Huffman coder' as  the  entropy  coder.  In  addition, 
note  that given the  four pixel neighborhood we use,  the pixel values of the  borders of the  image,  i.e., 
the  top  row,  the  leftmost  column,  and  the  rightmost  column need to be  stored  directly  (these  are  the 
border cases for which we can  not  apply  the  predictive  model).  Also,  the  model  (which is unique  for 
each image)  must  also  be  stored  in  the  compressed  image  data. We applied  Unix compress (which  uses 
Lempel-Ziv  coding) to  the  border pixels and  the  model,  and  concatenated  these  to  the  Huffman-coded 
error  signal.  Finally, two  integer  values  indicating  the size of the  image  (height,width) were added to  
the file. Given  this  da.ta, we can  reconstruct  an  image  without loss of information. 

Thus,  the  exact file size of the  compressed  image  (the values reported  in  the  experiments  below)  is: 
sizeof(~uffrnu1zGodedError) + sizeof(HuffmanCodeBook)+  sizeof(CompressedBorder) + sizeof(CompressedMode1) 

+ sizeof(2 integers) 
In tflle experiments  described below, our G P  system was  configured as follows: population=500, 

generations=30,  tournament,  selection  (size=5), 90% crossover, 10% reproduction,  no  mutation). 
Because the  s-expression  models  are  unconstrained  in  the  range of values that  they  can  return, 

the  worst-case size of the  codebook  is  actually  the  number of pixels in  the  image, even though  there 
are  only 256 unique pixel values  in the  original  image.  This  means  that  the size of the codeboolc can 
possibly  become  a  very  significant  component of the  compressed  data  that  must  be  transmitted. We 
therefore  implemented  a  execution  speedup  heuristic which abandons  evaluation of an  individual once 
the  number of unique  error  image pixel values generated exceeds either 40000 or 25% of the tota.1 
number of pixels in  the  input  image. By  doing  this, we avoid the  cost of running  the  entropy  coder for 
individuals  that  both  a) look  very unpromising  and  b) will be  extremely  computationally  expensive  to 
evaluate. 

3.1 Genome Compiler 
In  order to  evaluate a single  individual,  the s-expression  needs to be evaluated for each  pixel  in  the 
image  (excluding  the  borders).  This  requires  hundreds of thousands  to  millions of repeated  execution 
of the  same s-expression  per evaluation. We originally  implemented  the  image  compression  application 
based  on  lil-gp 1.1 [9], a well-known, efficient C  implementation of GP  This  implementation required 
almost two weeks of CPU  time  to execute  a 50 generation,  population 2000 GP run for compressing 
a 256 by 256 image  on  a 296-MHz Ultrasparc  2. Not  only  was  this  much too slow for practical  use, 
it  made  experimentation  infeasible.  Thus, we sought  to  make  individual  evaluations  as efficient as 
possible. 

We therefore  extended  lil-gp by implementing  a genome  compiler which translates  s-expressions 
into efficient SPARC ma.chine  code  prior to  execution.  The  major benefit of compilation is the  removal 
of function  call  overhead  during  the s-expression  tree evaluation, which we found was  responsible for 
the  vast  majority of the  computation  time in the  standard lil-gp  based  system.  While  the  compilation 
process itself requires  some  computational  overhead, we found  that  this was  negligible  when the  same 
s-expression  was evaluated  many  times. Using the  current  implementation of our  genome  compiler, we 
can  execute a 50 generation,  population 2000 G P  run for compressing a 256  by  256 image  in  about 2-3 
days  on  an 296MHz Ultrasparc  2, which  is  significantly  better than  the 10-15 days  it  took  prior to  the 
implementation of the  compiler.  Figure 2 shows an  example of this  compilation  process. 

'More specifically, we used  the  Huffman  coder  in [?] and  computed  the  character  frequencies  before  initializing  the 
coder. 



....... ....... fP.0 ..................... 

m u l t  f p O ,   f p l ,  fpO 
mov f p 3 1 ,   f p l  

...... ....................... I l l a d d  f p O ,   f p l ,  fpO 1 1 .......... ....... ..... ............ 
2 ..mov fp31.!. ..... E? 
3 ...s ub f P l l  fP?.! .fP? 

Figure 2: Example of s-expression compilation: An s-expression  with corresponding assembly-level 
code.  Numbered  breaks  in  the  code  correspond  to  the  code  generated so far when the  post  order 
traversal  has progressed to  the node  indicated  in  the  tree  diagram. 

The genome  compiler’s  performance,  when  applied to  problems where individuals  are  repeated 
many  times,  compares  favorably  with  the  fastest  reported GP systems,  including  the CGPS system of 
Nordin and Banzhaf [7],  which directly  manipulates SPARC machine  code,  yielding  roughly  two  orders 
of magnitude  speedup over lil-gp on  symbolic  regression  problem^.^ Further  details  about  the  genome 
compiler will be  available  in a forthcoming  report. 

4 Results 
The genetic  programming  system for evolving  models for predictive  coding lossless image  compression 
was evaluated by comparing  the size of the  compressed files with a number of standard lossless com- 
pression algorithms  on  a  set of grey scale images.  The  images used were science images of planetary 
surfaces  taken  from  the NASA Galileo  Mission image archives  (we  used  these  images  because  these are 
of greatest  interest  to  our  sponsor).  Note  that in this  report, we focus  on  grey scale images,  but  the 
technique  can  be  straightforwardly  extended  to color  images by operating  on  three  image  planes  (red, 

3By which we mean  the  comparative  speed  in  time  to  execute a GP  run over standard C implementations of G P  such 
as lil-gp[9] and  SGPC [13] running  on  the  same  problem  the  same  machine as the  genome  compiler. 

4Note  that  for  image  compression,  the  majority of the  time is now spent in the  adaptive  Huffman  coder, which is why 
the  speedup  compared  to  the  standard lil-gp implementation is only  around a factor of 5. This  point is further  discussed 
in 6 .  



blue,  green) ~ this is what  many  state of the  art  algorithms such as CALIC  do. 
The compression  ratio of the following algorithms  are shown  in Table 1. 

0 evolved The evolved  predictive  coding  compression  algorithm 

0 CALIC: A stat8e of the  art lossless image  compression  algorithm,  described in [15]. In  general, 
this  algorithm  provides  the  best  compression  ratio  among  previous  algorithms. 

0 LOCO-I This is an  algorithm developed by Weinberger  et a1 [14] which  was  recently  selected as 
the new IS0  JPEG-LS (lossless JPEG) baseline  standard. 

0 gzzp,  compress,  pack: These  are  standard  Unix  string  compression  utilities; gzzp implements 
the Lempel-Ziv  (LZ77)  algorithm, compress implementes  the  adaptive Lempel-Ziv-Welch (LZW) 
algorithm,  and pack uses  Huffman  coding. 

0 szip: A software  simulation of the Rice Chip,  the  current  standard lossless compression  hardware 
used by NASA. 

It  important  to  note  that  a different model is evolved  for  each image  that  the  genetic  programming 
system is applied  to. In contrast,  the  other  approaches  (CALIC,  GIF,  etc.)  apply  a  single  model 
to every image.  Thus,  the  time  to  compress  an  image  using  the  genetic  programming  approach is 
several  orders of magnitude  greater  than  the  time  it  takes  to  compress  an  image  using  other  methods. 
However, the  time  to decompress an  image is competitive  with  other  methods.  Therefore,  the  genetic 
programming  system is an  example of an asymmetric  compression  algorithm (slow compression,  fast 
decompression). 

Image  name 

12465  (20) 13298 11350  11699 10716 10460 9594  19055 earth8 
13269 (18) 15551 12520  13117 11476 11183 10218  21039 earth7 
12793 (8) 13264  10925 11339  10488 10144 9288 20400 earth6 
7727  (30) 8072  6865 7441  5857 5631  5513  11246 earth4-128 

40585  (30) 55068 40908  42502 32932 31798 30380  72643 earth 
szip pack gzip compress LOCO-I (JPEG-LS) CALIC evolved original  size 

Table 1: Compression  ratios of various  compression  techniques  applied to  set of test  images. 

As Table 1 shows, the compressed file sizes obtained  using  the GP-evolved models is superior to  
all of the  other  algorithms for these  test  images.  Due to  the  extremely  long  runtimes  for  evolving 
compressed  images (at  the  time  that  the  experiments were being run,  the genome  compiler was still 
under  development), we have  only  collected data for a  small  number of runs. We are  currently  in  the 
process of collecting  more data  to  better  understand  the  relative efficacy of evolutionary  compression 
on  a  wide  range of image classes. 

5 Related Work 
Salami  developed  part of an evolvable hardware  system for lossless image  compression [lo]. They used 
a  genetic  algorithm  to evolve  weights for a  linear  predictor for predictive  coding,  and  showed that 
the  entropy of the  error  image for some  test  images  was lower than  that of CALIC  and  LOCO  (the 
error  image  entropy was measured  instead of the  compression  ratio,  since  they  did  not  implement  an 
entropy  coder). However, note  that  the  entropy of the  error  image is not  necessarily indicative of 
the  relative  compression  ratio  obtained by a  complete  compression  system, and is only  a  first-order 
approximation for actual  compression  results.  This is in  part  because  entropy  coding  techniques  such  as 
Huffman  Coding  do  not  perform  optimally for arbitrary  distributions of error pixel values,  and  actual 
performance of the coders  depends  largely on the  error pixel distributions.  Furthermore,  CALIC  and 
LOCO  apply  context  modeling  techniques  to  the  error  image  to  further  reduce  entropy,  and  the  error 



image  entropy  metric used in [lo] does  not  take  this  into  account. For example,  the  error  image 
entropy for the barb test  image used by Salami  et a1 is smaller for LOCO  (5.625)  than for CALIC 
(5.636),  but  the  number of bits/pixel  in  the final compressed file is smaller for CALIC (4.41) than for 
LOCO (4.69). Also,  the old standard  JPEG’  obtains  the lowest  error image  entropy  on two of Salami 
et  al’s  images, even though  the final compressed file size is the worst (by  a  significant  margin)  among 
the  three  algorithms for all  eight of the  images.  These  discrepancies between  error image  entropies  and 
actual  compression  performance  indicates  that  error  image  entropy is not a  good  metric for comparing 
different compression  algorithms. Thus, while Salami  et  al’s work was a very encouraging,  important 
first  step  in  evolving  linear  predictive  coders,  it is not clear that  the low-entropy  error  images  discovered 
by their  system  could  be  further encoded into  a file that is smaller  than  the  compressed files created 
by state of the  art  algorithms such as  CALIC  and  LOCO. 

Our work differs from [lo] in that we evolved  nonlinear  predictive  models  using  genetic  program- 
ming,  as  opposed  to  linear  models  in evolvable hardware.  Furthermore, we have  implemented  a  com- 
plete  compression  system,  and showed that  this  approach is capable of yielding  smaller  compressed files 
than  that of the  best  known lossless compression  algorithms,  CALIC  and  LOCO.  However,  because  our 
system is implemented  entirely  in  software on  general  purpose  hardware, it is likely to be  significantly 
slower than  the speeds  achievable  using  a  dedicated  evolvable  hardware  platform. 

Neural  networks  have  previously  been  used to learn  nonlinear  predictors  (c.f. [l]). However, it 
is difficult to  compare  these  approaches  with  our work because they  do  not  compare  their  system  to 
current,  standard lossless image  compression  algorithms  (this is in part because many of the advances 
in  lossless compression  are  quite recent [4, 51. 

Salami  et  al. have also developed an evolvable hardware  system for lossy compression  which  evolves 
nonlinear  predictive  models  on  function level evolvable hardware [12, 111. 

Image  compression  using G P  has been  previously studied in the  context of programmatic   com- 
pression, where  essentially, an  image  is used as  the  target  function for symbolic  regression.  Koza [3] 
initially  demonstrated  this  technique  on  a 30 by 30 bitmap. Nordin  and  Banzhaf [8] used CGPS, a very 
efficient GP system,  and  heuristics such as chunlcing (tiling  an  image  into  smaller  subimages which  were 
separately  compressed) to scale up  the  technique  to 256  by  256 images.  Programmatic  compression is 
theoretically  capable of being lossless (if a perfect model of the  image is discovered),  but  it  is  essentially 
a lossy technique,  and is very different from lossless predictive  coding  compression. 

Work  in the  implementation of high-performance G P  systems closely related  to  our  genome  compiler 
includes that of Nordin and  Banzhaf, [7], whose CGPS  system  directly  manipulates  SPARC  machine 
code,  and  Juille  and Pollack [a], whose system  compiles  s-expressions  into  virtual  stack-based  machine 
code. 

6 Discussion and Future Work 
The research  reported  here is preliminary,  and is only  the  first  step  in  understanding  the  capabilities 
and  limitations of using  genetic  programming for lossless image  compression. 

We believe that  our  initial  results  are  quite  promising, since they show that  the evolved  models 
can yield an  improvement over CALIC, which is currently  the  best known lossless image  compression 
algorithm.  Furthermore,  these  results were obtained  without  any  special  tuning of algorithm  control 
parameters or the  function/terminal  sets for the  GP  system. 

However, it  should  be  noted  that  the  genetic  programming  system  takes  several  orders of magnitude 
more  time  to evolve a model  that achieves its  superior  results  (several  hours  per  image)  tha.n  the  other 
approaches  (which  run  in a few seconds).  Although slow compression  times  are  acceptable for some 
applications,  as  long  as  decompression is fast  (e.g., for archiving  images),  this is not  acceptable for 
applications  requiring  near  real-time  compression  times.  In  addition,  the slowness of the  current G P  
system  makes  it difficult for us to  experiment  with  variations  on  the  technique,  because  it  takes  too 
much time  to  gather  statistically  significant  data. 

’This  refers to  the  previous  standard lossless JPEG  algorithm,  prior  to  the  recent  selection of the new LOCO-I/JPEG- 
LS standard. 
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We have  implemented  a  genome  compiler  to  speed  up  the  execution  time (see Section 3.1, and have 
succeeded in  obtaining  a  factor of 5 speedup over standard GP for 256x256 images. However now 
the  vast  majority (98% for 256x256 images) of the  execution  time is spent  in  the  adaptive  Huffman 
coding  code.  Therefore,  a  promising avenue  explore is to evolve  models  by  using  error image  entropy 
as  the  fitness  measure,  instead of compression  ratio  (as  done by [lo]) ~ this would  allow  us to avoid 
running  the  Huffman  encoder for each individual  evaluation,  resulting  in  significant  execution  speedup. 
However, this  may  result  in  degraded  compression  performance,  since,  as we noted  above,  error  image 
entropy is not  always a reliable  predictor of compression  ratio. A compromise would  be to develop 
a modified  objective  function  computation  scheme  in which we only  execute the  Huffman  coder for 
individuals  that  generate  error  image  entropies which are  not  significantly worse than  that of the  best 
individual  found so far.  This would enable us to  eliminate  entropy  coding  for  the  majority of individual 
evaluations,  and will likely lead to  an  order of magnitude  speedup. 

There  are  many  more  directions which can  be  pursued  in  evolutionary  image  compression.  First, 
it  seems  worthwhile to  experiment  with different entropy  coders.  Second,  there  are  more  sophisticated 
predictive  coding  architectures  which  can be explored. One  such example would  be a  two-pass  model 
in  which a  standard (evolved or hand-coded)  linear  model  is  first  applied to  minimize the first  order 
entropy,  then followed by the  application of an evolved  nonlinear  model to model  the  error  after  the 
linear  model is applied.  Third, we can  divide  the  image6  into  subimages  and  apply  the  compression 
separately to  the  subimages. 

Finally,  a very intriguing  prospect would  be to  try  to evolve  models  which are  more  general  than 
the image-specific  nonlinear  models that were explored in this  paper. By using  sets of images  as  fitness 
cases instead of a. single  image,  it  is possible to  try  to evolve a single  predictive  model  (such  as  those 
handcoded  in  traditional lossless compression  algorithms) which  works well for  a  large  class of images. 
This will no  doubt  require  an  enormous  amount of computation. However, it  may  be  possible  to 
generate a nonlinear  model, which  when  possibly  combined  with context  modeling  techniques,  yields 
a  better, general  purpose  model than  those used by state of the  art  algorithms. 
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